词语吧>历史百科>四库百科>椭圆拾遗

椭圆拾遗

三卷。清李善兰(详见《方圆阐幽》)撰。这是一部研究椭圆及其相关问题的专著,是李善兰在吸收西方数学知识基础上,独立获得的关于椭圆性质、作图等方面一系列成果的反映。全书三卷共四十四款,卷一共二十款,李善兰独立提出并证明了二十个命题。命题一、二是椭圆基本定理:椭圆与辅圆对应弦之比,等于椭圆长短轴之比。对此李善兰给出了独特的证明,他利用投影的概念,讨论了椭圆与大、小辅圆的关系:“盖平圆侧视之即成椭圆,平圆诸正弦恒为弦,侧视所成椭圆诸正弦恒为勾,成无数等势勾股形,故比例恒同也。”“盖椭圆从长径端侧视之,长径必稍短,渐侧渐短与短径等,即成平圆矣,椭圆诸正弦恒为弦,侧视所成平圆诸正弦恒为勾,成无数等势勾股形,故比例恒同也。”命题三是:“凡椭圆斜交斜径之正弦与斜径上平圆之正弦比恒如半属径与半斜径比。”李善兰运用了平行投影的方法证明了这一命题:“试置椭圆柱自短径端斜截之,令成平圆面,复自长径端斜截之,仍为椭圆面,令二面之交线过柱心,则交线即斜径,二面正弦与圆柱周诸直线成无数等势三角形,故比例恒同也。”这是李善兰独立提出的一条新的定理,椭圆基本定理仅是它特例,其证明方法颇为独特,前所未闻。以后的几个命题均是由此推出的新结果。命题四证明椭圆与辅圆的面积关系为:椭圆面积∶大辅圆面积=椭圆短半轴∶椭圆长半轴=椭圆外切长方形面积∶辅圆外切正方形面积;椭圆面积∶小辅圆面积=椭圆长半轴∶椭圆短半轴=椭圆外切长方形面积∶辅圆外切正方形面积。命题五对此作了推广:“椭圆与斜径上平圆比,如属径股与斜径比。”命题6证明:“凡椭圆与长径上平圆二圆内所有三角形及诸边形若同用一底,在长径内切圆周诸角具在一个垂线内,则其面积之比恒如短径与长径比”。命题七为命题六的推广:“凡椭圆及斜径上平圆二圆内所有三角及诸边形若同用一底,在斜径内切圆周诸角作线,一与属径平行,一正交斜径,俱遇于斜径内一点,则其面积之比恒如属径股与斜径比。”命题八证明了“椭圆正交长径之正弦与长径上平圆正弦比,如短径上平圆余弦与椭圆余弦比。”命题九对此作了推广。值得注意的是命题十二,它讨论了椭圆规的原理,这在国内尚属首次:“任自椭圆周一点作线至长径上,令等于小半径,则引长之至短径,必等于大半径。”李善兰明确指出:“用十字槽作椭圆周即此款之理也。”命题十三以后各题是与椭圆有关的比例及计算问题,这对于解决轨道计算和某些作图问题有一定价值。如命题十三:“大小二径较比如大小二矢比”,命题十四:“径较与矢比恒如倍两心差与长径比”。《椭圆拾遗》卷二共九款,讨论了九个求焦点位置的问题。这些均为已知椭圆的一个焦点及其它一些条件,用作图法求另一个焦点。解此类题均需综合应用椭圆及其切线的性质及作图知识,具有较高的技巧性。如命题二十三:“有一心,有椭圆二点,其一点并知切线,求余一心”;命题二十五:“有一心,有最卑点,有椭圆一切线不知切点,求余一心。”命题二十七:“有一心,有椭圆三切线,俱不知切点,求余一心。”对这些题李善兰不仅给出了具体作法,并证明了作法正确性。这类命题由李善兰独立提出并加以研究,他的工作在国内是首创性的。《椭圆拾遗》卷三主要讨论与椭圆轨道计算有关的一些问题,李善兰用微积分和无穷级数加以解决。卷三共十五款,如命题三十三:“距心线之级数为借积度求平引面积之微分”;命题三十四:“有距心线级数,求平引面积”;命题三十八:“有最卑后实引度求距心线之级数。”在解这些问题时,李善兰不仅纯熟地运用微积分知识,并且探讨了级数展开式的系数变化规律,他用一个垛积图说明“诸系数递增之理”,相当于给出了幂级数展开式。李善兰在未曾得知西方同类成果的情况下,结合几何、三角、微积分和无穷级数等知识独立研究了有关椭圆运动级数展开方面的课题,并获得了独创性的成果,对中算发展产生一定的影响。《椭圆拾遗》收入了1867年出版的《则古昔斋算学》中。其版本有:1867年金陵刊本六册,现藏北京图书馆与苏州图书馆;1868年刊本;1882年江宁藩署刊本;同文馆聚珍本;积山书局石印本与大同书局石印本。

猜你喜欢

  • 飞燕外传

    一卷。旧本题汉伶元(玄)撰,生卒年不详。伶元(玄)字子于,潞水(今山西长治)人。《顾氏文房小说》本有自序,称与杨雄同时,历官至淮南相、河东都尉。此书不见于唐人所撰书目,始见于人宋人著录,故历代学者考证

  • 马平县志

    十卷首一卷,清舒启修,吴光升纂。舒启,满洲正红旗人。举人,知县。吴光升,纂辑《柳州府志》同时纂辑此志。县旧无志,康熙六年(1667)阎侯志草二册,逾三十余载,邑人稍加补缀,又四十年马君就遗帙增损,集四

  • 诗经互解

    一卷。清范士增撰。是卷即以《诗经》成句解《诗经》。如以“如此良人何”解“有女仳离”,以“不属于毛,不离于裹”解“谓他人父,亦莫我有”,以“信誓旦旦”解“有如皦日”,以“其毒太苦”解“胡为虺蜴”,以“岁

  • 续名贤小记

    一卷。清徐晟(生卒年不详)撰。晟字桢起,一字损之,别署秦台樵史、活埋庵主人,徐树丕子。该书为续文震孟姑苏《名贤小纪》而作。起隆庆万历至崇祯为一卷,自甲申死事诸贤迄于明遗隐逸为一卷。今此本二十五篇,附见

  • 燕几图

    一卷。作者不详。旧本题宋黄伯思撰。据《四库全书总目提要》编撰者考证,黄伯思北宋人,其生卒年代与是书自序中所题的年代不符,序末的题名,以字为名,以名为字,尤其谬误,故编撰者认为是书“殆后人所依托”。《燕

  • 孟子发微

    二卷。易顺豫(详见《礼记大学篇古微》)撰。是书大旨以《孟子》实有王齐王滕之事,而人莫知之。盖为《史记》所误最大者,缺魏惠王后元十五年,以其事属之襄王,致两丧地于秦七百里,南辱于楚二语,无有着落。顺豫据

  • 韵字探骊

    五卷。清徐锡龄撰。锡龄字厚卿,元和(今江苏吴县)人。谓《佩文韵府》虽为艺林正鹄,然为帙一万八千有奇,为文一千七百馀万言,寒士固无力购求,中材亦难卒读。遂编撰斯编,于《佩文韵府》节录条取,避熟取生,聊备

  • 修竹编

    一卷。明葛一龙(1566-1640?)撰。一龙,字震甫,江苏吴县人。官云南布政司理间,于崇祯庚辰(1640年)卒于家。一龙以诗闻名吴中,曾著有《尺木斋诗选》、《新诗索解》、《滇茶百韵》、《鹧鸪集》诸书

  • 六义图解

    一卷。明王应电(其生平未详)撰。所谓六义,即六书。此书以图解的形式说明六义的相互关系与演进过程。其排列顺序是,先象形,次指事,次会意,次转注假借,次谐声。按六书之名,始见于《周礼·地官·保氏》,释之者

  • 剿闯通俗小说

    十回。题“西吴懒道人口授”,作者真实姓名不详,书成于明末。长篇小说,主要叙述明末李自成(闯王)起义事。开头略述明代万历间魏忠贤祸国事,引为明朝衰败根由。主要部分叙李自成起兵、攻陷北京、崇祯自缢而死、吴